Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.965
Filtrar
1.
Surg Neurol Int ; 15: 108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628517

RESUMO

Background: Although mutations in telomerase reverse transcriptase (TERT) promoter (TERTp) are the most common alterations in glioblastoma (GBM), predicting TERTp mutation status by preoperative imaging is difficult. We determined whether tumour-surrounding hyperintense lesions on fluid-attenuated inversion recovery (FLAIR) were superior to those of contrast-enhanced lesions (CELs) in assessing TERTp mutation status using magnetic resonance imaging (MRI). Methods: This retrospective study included 114 consecutive patients with primary isocitrate dehydrogenase (IDH)-wild-type GBM. The apparent diffusion coefficient (ADC) and volume of CELs and FLAIR hyperintense lesions (FHLs) were determined, and the correlation between MRI features and TERTp mutation status was analyzed. In a subset of cases, FHLs were histopathologically analyzed to determine the correlation between tumor cell density and ADC. Results: TERTp mutations were present in 77 (67.5%) patients. The minimum ADC of FHLs was significantly lower in the TERTp-mutant group than in the TERTp-wild-type group (mean, 958.9 × 10-3 and 1092.1 × 10-3 mm2/s, respectively, P < 0.01). However, other MRI features, such as CEL and FHL volumes, minimum ADC of CELs, and FHL/CEL ratio, were not significantly different between the two groups. Histopathologic analysis indicated high tumor cell density in FHLs with low ADC. Conclusion: The ADC of FHLs was significantly lower in IDH-wild-type GBM with TERTp mutations, suggesting that determining the ADC of FHLs on preoperative MRI might be helpful in predicting TERTp mutation status and surgical planning.

2.
Int J Nanomedicine ; 19: 3295-3314, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606373

RESUMO

Background: Cardiac repair remains a thorny issue for survivors of acute myocardial infarction (AMI), due to the regenerative inertia of myocardial cells. Cell-free therapies, such as exosome transplantation, have become a potential strategy for myocardial injury. The aim of this study was to investigate the role of engineered exosomes in overexpressing Growth Differentiation Factor-15 (GDF-15) (GDF15-EVs) after myocardial injury, and their molecular mechanisms in cardiac repair. Methods: H9C2 cells were transfected with GDF-15 lentivirus or negative control. The exosomes secreted from H9C2 cells were collected and identified. The cellular apoptosis and autophagy of H2O2-injured H9C2 cells were assessed by Western blotting, TUNEL assay, electron microscopy, CCK-8 and caspase 3/7 assay. A rat model of AMI was constructed by ligating the left anterior descending artery. The anti-apoptotic, pro-angiogenic effects of GDF15-EVs treatment, as well as ensuing functional and histological recovery were evaluated. Then, mRNA sequencing was performed to identify the differentially expressed mRNAs after GDF15-EVs treatment. Results: GDF15-EVs inhibited apoptosis and promoted autophagy in H2O2 injured H9C2 cells. GDF15-EVs effectively decreased the infarct area and enhanced the cardiac function in rats with AMI. Moreover, GDF15-EVs hindered inflammatory cell infiltration, inhibited cell apoptosis, and promoted cardiac angiogenesis in rats with AMI. RNA sequence showed that telomerase reverse transcriptase (TERT) mRNA was upregulated in GDF15-EVs-treated H9C2 cells. AMPK signaling was activated after GDF15-EVs. Silencing TERT impaired the protective effects of GDF15-EVs on H2O2-injured H9C2 cells. Conclusion: GDF15-EVs could fulfil their protective effects against myocardial injury by upregulating the expression of TERT and activating the AMPK signaling pathway. GDF15-EVs might be exploited to design new therapies for AMI.


Assuntos
Exossomos , MicroRNAs , Infarto do Miocárdio , Ratos , Animais , Exossomos/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Miócitos Cardíacos , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Infarto do Miocárdio/patologia , RNA Mensageiro/metabolismo , Apoptose , MicroRNAs/genética
3.
Parasitol Res ; 123(4): 179, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584235

RESUMO

Giardia duodenalis, the protozoan responsible for giardiasis, is a significant contributor to millions of diarrheal diseases worldwide. Despite the availability of treatments for this parasitic infection, therapeutic failures are alarmingly frequent. Thus, there is a clear need to identify new therapeutic targets. Giardia telomeres were previously identified, but our understanding of these structures and the critical role played by Giardia telomerase in maintaining genomic stability and its influence on cellular processes remains limited. In this regard, it is known that all Giardia chromosomes are capped by small telomeres, organized and protected by specific proteins that regulate their functions. To counteract natural telomere shortening and maintain high proliferation, Giardia exhibits constant telomerase activity and employs additional mechanisms, such as the formation of G-quadruplex structures and the involvement of transposable elements linked to telomeric repeats. Thus, this study aims to address the existing knowledge gap by compiling the available information (until 2023) about Giardia telomeres and telomerase, focusing on highlighting the distinctive features within this parasite. Furthermore, the potential feasibility of targeting Giardia telomeres and/or telomerase as an innovative therapeutic strategy is discussed.


Assuntos
Giardia lamblia , Giardíase , Telomerase , Humanos , Telomerase/genética , Telomerase/metabolismo , Giardíase/parasitologia , Giardia/genética , Telômero/genética , Giardia lamblia/genética , Giardia lamblia/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-38593055

RESUMO

Prostate cancer (PC) is the most frequent cancer in males, as well as the second highest cause of cancer-related deaths in men. Differences in expression levels of miRNAs were linked with prostat cancer pathogenesis. qPCR was used to evaluate the expression of miR-130b-3p and miR-375 in Benign Prostate Hyperplasia (BPH (n = 20) and PC (n = 22, pre- and post-operative) patients plasma. Relative telomere lengths (RLTs) in genomic DNA isolated from plasma were measured with qPCR, and telomerase activity analyzed by the ELISA method. PSA levels of PC patients were greater than of BPH patients (p = 0.0473). miR-130b-3p and miR-375 levels were significantly lower in pre-operative specimens of PC patients according to BPH (p = 0,0362, p = 0.0168, respectively). Similarly, post-operative miR-375 levels were lower in PC patients than in BPH patients (p = 0.1866). BPH patients had shorter RTLs than PC patients in both pre- (p=0.0438) and post-operative (p=0.0297) specimens. Telomerase activity was higher in PC patients than BPH(p = 0.0129). Interestingly, telomerase activity was further increased after surgery (p = 0.0003). We aim to identify the levels of miR-130b-3p and miR-375 expression and their relationship with telomerase activity in PC patients. Our data suggest that miRNAs and telomere length (TL) with telomerase activity may play a role in regulating prostate tumorgenesis and may be used as biomarkers for PC diagnosis.

5.
Plants (Basel) ; 13(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38592918

RESUMO

The current repertoire of methods available for studying RNA-protein interactions in plants is somewhat limited. Employing an RNA-centric approach, particularly with less abundant RNAs, presents various challenges. Many of the existing methods were initially designed for different model systems, with their application in plants receiving limited attention thus far. The Comprehensive Identification of RNA-Binding Proteins by Mass Spectrometry (ChIRP-MS) technique, initially developed for mammalian cells, has been adapted in this study for application in Arabidopsis thaliana. The procedures have been meticulously modified and optimized for telomerase RNA, a notable example of a low-abundance RNA recently identified. Following these optimization steps, ChIRP-MS can serve as an effective screening method for identifying candidate proteins interacting with any target RNA of interest.

6.
Neurooncol Adv ; 6(1): vdae035, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596718

RESUMO

Background: Outcomes for children with high-grade gliomas (HGG) remain poor. This multicenter phase II trial evaluated whether concurrent use of vorinostat or bevacizumab with focal radiotherapy (RT) improved 1-year event-free survival (EFS) compared to temozolomide in children with newly diagnosed HGG who received maintenance temozolomide and bevacizumab. Methods: Patients ≥ 3 and < 22 years with localized, non-brainstem HGG were randomized to receive RT (dose 54-59.4Gy) with vorinostat, temozolomide, or bevacizumab followed by 12 cycles of bevacizumab and temozolomide maintenance therapy. Results: Among 90 patients randomized, the 1-year EFS for concurrent bevacizumab, vorinostat, or temozolomide with RT was 43.8% (±8.8%), 41.4% (±9.2%), and 59.3% (±9.5%), respectively, with no significant difference among treatment arms. Three- and five-year EFS for the entire cohort was 14.8% and 13.4%, respectively, with no significant EFS difference among the chemoradiotherapy arms. IDH mutations were associated with more favorable EFS (P = .03), whereas H3.3 K27M mutations (P = .0045) and alterations in PIK3CA or PTEN (P = .025) were associated with worse outcomes. Patients with telomerase- and alternative lengthening of telomeres (ALT)-negative tumors (n = 4) had an EFS of 100%, significantly greater than those with ALT or telomerase, or both (P = .002). While there was no difference in outcomes based on TERT expression, high TERC expression was associated with inferior survival independent of the telomere maintenance mechanism (P = .0012). Conclusions: Chemoradiotherapy with vorinostat or bevacizumab is not superior to temozolomide in children with newly diagnosed HGG. Patients with telomerase- and ALT-negative tumors had higher EFS suggesting that, if reproduced, mechanism of telomere maintenance should be considered in molecular-risk stratification in future studies.

7.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167156, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582267

RESUMO

Choroidal neovascularization (CNV) is the principal driver of blindness in neovascular age-related macular degeneration (nvAMD). Increased activity of telomerase, has been associated with endothelial cell proliferation, survival, migration, and invasion in the context of tumor angiogenesis. Expanding on this knowledge, we investigated the role of telomerase in the development of CNV in mouse model. We observed increased gene expression and activity of telomerase in mouse CNV. Genetic deficiency of the telomerase components, telomerase reverse transcriptase (Tert) and telomerase RNA component (Terc) suppressed laser-induced CNV in mice. Similarly, a small molecule inhibitor of TERT (BIBR 1532), and antisense oligonucleotides (ASOs) targeting Tert and Terc reduced CNV growth. Bone marrow chimera studies suggested that telomerase activity in non-bone marrow-derived cells is crucial for the development of CNV. Comparison of BIBR 1532 with VEGF neutralizing therapeutic strategy in mouse revealed a comparable level of angiosuppressive activity. However, when BIBR and anti-VEGF antibodies were administered as a combination at sub-therapeutic doses, a statistically significant suppression of CNV was observed. These findings underscore the potential benefits of combining sub-therapeutic doses of BIBR and anti-VEGF antibodies for developing newer therapeutic strategies for NV-AMD. Telomerase inhibition with BIBR 1532 suppressed induction of multiple cytokines and growth factors critical for neovascularization. In conclusion, our study identifies telomerase as a promising therapeutic target for treating neovascular disease of the eye and thus provides a proof of principle for further exploration of telomerase inhibition as a novel treatment strategy for nvAMD.

8.
World J Gastroenterol ; 30(9): 1224-1236, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38577190

RESUMO

BACKGROUND: As a critical early event in hepatocellular carcinogenesis, telomerase activation might be a promising and critical biomarker for hepatocellular carcinoma (HCC) patients, and its function in the genesis and treatment of HCC has gained much attention over the past two decades. AIM: To perform a bibliometric analysis to systematically assess the current state of research on HCC-related telomerase. METHODS: The Web of Science Core Collection and PubMed were systematically searched to retrieve publications pertaining to HCC/telomerase limited to "articles" and "reviews" published in English. A total of 873 relevant publications related to HCC and telomerase were identified. We employed the Bibliometrix package in R to extract and analyze the fundamental information of the publications, such as the trends in the publications, citation counts, most prolific or influential writers, and most popular journals; to screen for keywords occurring at high frequency; and to draw collaboration and cluster analysis charts on the basis of coauthorship and co-occurrences. VOSviewer was utilized to compile and visualize the bibliometric data. RESULTS: A surge of 51 publications on HCC/telomerase research occurred in 2016, the most productive year from 1996 to 2023, accompanied by the peak citation count recorded in 2016. Up to December 2023, 35226 citations were made to all publications, an average of 46.6 citations to each paper. The United States received the most citations (n = 13531), followed by China (n = 7427) and Japan (n = 5754). In terms of national cooperation, China presented the highest centrality, its strongest bonds being to the United States and Japan. Among the 20 academic institutions with the most publications, ten came from China and the rest of Asia, though the University of Paris Cité, Public Assistance-Hospitals of Paris, and the National Institute of Health and Medical Research (INSERM) were the most prolific. As for individual contributions, Hisatomi H, Kaneko S, and Ide T were the three most prolific authors. Kaneko S ranked first by H-index, G-index, and overall publication count, while Zucman-Rossi J ranked first in citation count. The five most popular journals were the World Journal of Gastroenterology, Hepatology, Journal of Hepatology, Oncotarget, and Oncogene, while Nature Genetics, Hepatology, and Nature Reviews Disease Primers had the most citations. We extracted 2293 keywords from the publications, 120 of which appeared more than ten times. The most frequent were HCC, telomerase and human telomerase reverse transcriptase (hTERT). Keywords such as mutational landscape, TERT promoter mutations, landscape, risk, and prognosis were among the most common issues in this field in the last three years and may be topics for research in the coming years. CONCLUSION: Our bibliometric analysis provides a comprehensive overview of HCC/telomerase research and insights into promising upcoming research.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Telomerase , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Oncogenes , Bibliometria
9.
Dis Model Mech ; 17(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38441152

RESUMO

Telomere length, unlike most genetic traits, is epigenetic, in the sense that it is not fully coded by the genome. Telomeres vary in length and randomly assort to the progeny leaving some individuals with longer and others with shorter telomeres. Telomerase activity counteracts this by extending telomeres in the germline and during embryogenesis but sizeable variances remain in telomere length. This effect is exacerbated by the absence of fully active telomerase. Telomerase heterozygous animals (tert+/-) have reduced telomerase activity and their telomeres fail to be elongated to wild-type average length, meaning that - with every generation - they decrease. After a given number of successive generations of telomerase-insufficient crosses, telomeres become critically short and cause organismal defects that, in humans, are known as telomere biology disorders. Importantly, these defects also occur in wild-type (tert+/+) animals derived from such tert+/- incrosses. Despite these tert+/+ animals being proficient for telomerase, they have shorter than average telomere length and, although milder, develop phenotypes that are similar to those of telomerase mutants. Here, we discuss the impact of this phenomenon on human pathologies associated with telomere length, provide a brief overview of telomere biology across species and propose specific measures for working with telomerase-deficient zebrafish.


Assuntos
Telomerase , Animais , Humanos , Telomerase/genética , Peixe-Zebra/genética , Fenótipo , Telômero/genética , Epigênese Genética
10.
J Genet Eng Biotechnol ; 22(1): 100339, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38494270

RESUMO

BACKGROUND: Breast cancer (BC) has transcended lung cancer as the most common cancer in the world. Due to the disease's aggressiveness, rapid growth, and heterogeneity, it is crucial to investigate different therapeutic approaches for treatment. According to the World Health Organization (WHO), Plant-based therapeutics continue to be utilized as safe/non-toxic complementary or alternative treatments for cancer, even in developed countries, regardless of how cutting-edge conventional therapies are. Despite their low bioavailability, curcumin (CUR) and green tea (GT) represent safer therapeutic options. Due to their potent molecular-modulating properties on various cancer-related molecules and signaling pathways, they are considered gold-standard therapeutic agents and have been incorporated into the development of one or more therapeutic strategies of BC treatment. METHODS: We investigated the modulatory role of CUR and GT extracts on significant multi molecular targets in MCF-7 BC cell line to assess their potential as BC multi-targeting agents. We analyzed the phytocompounds in GT leaves using High-performance liquid chromatography (HPLC) and Gas chromatography-mass spectrometry (GC-MS) techniques. The mRNA expression levels of Raf-1, Telomerase, Tumor necrosis factor alpha (TNF-α) and Interleukin-8 (IL-8) genes in MCF-7 cells were quantified using quantitative real-time PCR (qRT-PCR). The cytotoxicity of the extracts was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the released Lactate dehydrogenase (LDH), a valuable marker for identifying the programmed necrosis (necroptosis). Additionally, the concentrations of the necroptosis-related proinflammatory cytokines (TNF-α and IL-8) were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS: In contrast to the GT, the results showed the anticancer and cytotoxic properties of CUR against MCF-7 cells, with a relatively higher level of released LDH. The CUR extract downregulated the oncogenic Raf-1, suppressed the Telomerase and upregulated the TNF-α and IL-8 genes. Results from the ELISA showed a notable increase in IL-8 and TNF-α cytokines levels after CUR treatment, which culminated after 72 h. CONCLUSIONS: Among both extracts, only CUR effectively modulated the understudy molecular targets, achieving multi-targeting anticancer activity against MCF-7 cells. Moreover, the applied dosage significantly increased levels of the proinflammatory cytokines, which represent a component of the cytokines-targeting-based therapeutic strategy. However, further investigations are recommended to validate this therapeutic approach.

11.
EMBO Rep ; 25(4): 1734-1751, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480846

RESUMO

Pif1 family helicases are multifunctional proteins conserved in eukaryotes, from yeast to humans. They are important for the genome maintenance in both nuclei and mitochondria, where they have been implicated in Okazaki fragment processing, replication fork progression and termination, telomerase regulation and DNA repair. While the Pif1 helicase activity is readily detectable on naked nucleic acids in vitro, the in vivo functions rely on recruitment to DNA. We identify the single-stranded DNA binding protein complex RPA as the major recruiter of Pif1 in budding yeast, in addition to the previously reported Pif1-PCNA interaction. The two modes of the Pif1 recruitment act independently during telomerase inhibition, as the mutations in the Pif1 motifs disrupting either of the recruitment pathways act additively. In contrast, both recruitment mechanisms are essential for the replication-related roles of Pif1 at conventional forks and during the repair by break-induced replication. We propose a molecular model where RPA and PCNA provide a double anchoring of Pif1 at replication forks, which is essential for the Pif1 functions related to the fork movement.


Assuntos
Proteínas de Saccharomyces cerevisiae , Telomerase , Humanos , Replicação do DNA/genética , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Telomerase/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
12.
Anal Chim Acta ; 1299: 342420, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38499416

RESUMO

BACKGROUND: Telomerase is considered a biomarker for the early diagnosis and clinical treatment of cancer. The rapid and sensitive detection of telomerase activity is crucial to biological research, clinical diagnosis, and drug development. However, the main obstacles facing the current telomerase activity assay are the cumbersome and time-consuming procedure, the easy degradation of the telomerase RNA template and the need for additional proteases. Therefore, it is necessary to construct a new method for the detection of telomerase activity with easy steps, efficient reaction and strong anti-interference ability. RESULTS: Herein, an efficient, enzyme-free, economical, sensitive, fluorometric detection method for telomerase activity in one-step, named triggered-DNA (T-DNA) nanomachine, was created based on target-triggered DNAzyme-cleavage activity and catalytic molecular beacon (CMB). Telomerase served as a switch and extended few numbers of (TTAGGG)n repeat sequences to initiate the signal amplification in the T-DNA nanomachine, resulting in a strong fluorescent signal. The reaction was a one-step method with a shortened time of 1 h and a constant temperature of 37 °C, without the addition of any protease. It also sensitively distinguished telomerase activity in various cell lines. The T-DNA nanomachine offered a detection limit of 12 HeLa cells µL-1, 9 SK-Hep-1 cells µL-1 and 3 HuH-7 cells µL-1 with a linear correlation detection range of 0.39 × 102-6.25 × 102 HeLa cells µL-1 for telomerase activity. SIGNIFICANCE: In conclusion, our study demonstrated that the triggered-DNA nanomachine fulfills the requirements for rapid detection of telomerase activity in one-step under isothermal and enzyme-free conditions with excellent specificity, and its simple and stable structure makes it ideal for complex systems. These findings indicated the application prospect of DNA nanomachines in clinical diagnostics and provided new insights into the field of DNA nanomachine-based bioanalysis.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Telomerase , Humanos , Células HeLa , Telomerase/análise , DNA/química , DNA Catalítico/química , Técnicas Biossensoriais/métodos , Limite de Detecção
13.
Biomedicine (Taipei) ; 14(1): 10-19, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533302

RESUMO

Aging is considered part of the natural process of life, however in recent years medical literature has started to show that specific facets of aging are beginning to be understood and those factors may even be considered preventable with various measures. Aging is also considered the number one cause of poor quality of life, disease, disability, and death, so the importance of understanding the aging process and how to control certain aspects of it cannot be underestimated when age related suffering is factored in. The causes of aging are now becoming well understood, and in recent years many therapies have already become available to the public to attenuate specific corridors of aging. The heterogeneity of the aging process and the biological drivers involved is examined here in parallel with various compounds and therapies to combat biological decline. The benefits for governments in keeping their populations healthy and vibrant are vast, and at the same time offer a great incentive to invest into newly emerging technologies that may prevent the onset of preventable disease. Whilst this paper only discusses nine pathways to the aging process, many more exist.

14.
Sci Rep ; 14(1): 5382, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443436

RESUMO

Telomerase activity is restricted in humans and telomere attrition occurs in several tissues accompanying natural aging. Critically short telomeres trigger DNA damage responses and activate p53 which leads to apoptosis or replicative senescence. These processes reduce cell proliferation and disrupt tissue homeostasis, thus contributing to systemic aging. Similarly, zebrafish have restricted telomerase expression, and telomeres shorten to critical length during their lifespan. Telomerase-deficient zebrafish (tert -/-) is a premature model of aging that anticipates aging phenotypes due to early telomere shortening. tert -/- zebrafish have impaired cell proliferation, accumulation of DNA damage markers and p53 response. These cellular defects lead to disruption of tissue homeostasis, resulting in premature infertility, gastrointestinal atrophy, sarcopenia and kyphosis. Such consequences contribute to its premature death. Here we reveal a genetic interdependence between tp53 and telomerase function. Mutation of tp53 abrogates premature aging of tert -/- zebrafish, prolonging male fertility and lifespan. However, it does not fully rescue healthspan. tp53mut tert -/- zebrafish retain high levels of inflammation and increased spontaneous cancer incidence. Conversely, loss of telomerase prolongs the lifespan of tp53mut single mutants. Lack of telomerase reduces two-fold the cancer incidence in double mutants and increases lifetime survival. Thus, we observe a reciprocal rescue of tp53mut and tert -/- that ameliorates lifespan but not spontaneous cancer incidence of tp53mut, likely due to higher levels of inflammation.


Assuntos
Neoplasias , Telomerase , Humanos , Animais , Masculino , Longevidade/genética , Peixe-Zebra/genética , Telomerase/genética , Incidência , Proteína Supressora de Tumor p53/genética , Inflamação , Neoplasias/genética
15.
Bratisl Lek Listy ; 125(4): 233-238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38526859

RESUMO

BACKGROUND: In this study, we aimed to examine the telomerase activity and hTERT gene expression in patients with acute coronary syndrome (ACS) and those with stable coronary artery disease (SCAD) and compare the results to controls. Additionally, we compared overall mortality rates relative to the telomerase activity. METHODS: A total of 211 patients (78 ACS and 71 SCAD patients) were included in the study. The telomerase concentration was measured by ELISA and used to determine telomerase activity. The hTERT gene expression was determined by real-time PCR. RESULTS: The serum telomerase enzyme concentration was lower in ACS (36.61 ± 1.54) and SCAD (36.79 ± 1.57) when compared to the control group (37.03 ± 2.25). However, this difference did not reach statistical significance (p = 0.890). The hTERT gene expression acting in telomerase enzyme synthesis was 2.7-fold lower in ACS group (p = 0.070) and 2.2-fold lower in the SCAD group (p = 0.101) compared to the control group. Patients were followed for a median of 32 months (minimum: 0.1, maximum: 46.8). The serum telomerase concentrations in patients who died and those survived in the SCAD group (35.98 ± 2.02 vs 36.86 ± 1.52 ng/ml, respectively; p = 0.529) were similar to those in the ACS group (36.39 ± 1.08 vs 36.63 ± 1.60 ng/ml, respectively p = 0.993). CONCLUSIONS: In the current study, telomerase activity or hTERT expression was similar in patients with ACS, SCAD, and controls. Moreover, telomerase activity was not associated with all- cause mortality during the 32-month follow-up (Tab. 3, Fig. 1, Ref. 29).


Assuntos
Síndrome Coronariana Aguda , Doença da Artéria Coronariana , Telomerase , Humanos , Doença da Artéria Coronariana/genética , Síndrome Coronariana Aguda/genética , Telomerase/genética , Telomerase/metabolismo , Expressão Gênica
16.
Front Plant Sci ; 15: 1351613, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434436

RESUMO

NASA envisions a future where humans establish a thriving colony on the Moon by 2050. Plants will be essential for this endeavor, but little is known about their adaptation to extraterrestrial bodies. The capacity to grow plants in lunar regolith would represent a major step towards this goal by minimizing the reliance on resources transported from Earth. Recent studies reveal that Arabidopsis thaliana can germinate and grow on genuine lunar regolith as well as on lunar regolith simulant. However, plants arrest in vegetative development and activate a variety of stress response pathways, most notably the oxidative stress response. Telomeres are hotspots for oxidative damage in the genome and a marker of fitness in many organisms. Here we examine A. thaliana growth on a lunar regolith simulant and the impact of this resource on plant physiology and on telomere dynamics, telomerase enzyme activity and genome oxidation. We report that plants successfully set seed and generate a viable second plant generation if the lunar regolith simulant is pre-washed with an antioxidant cocktail. However, plants sustain a higher degree of genome oxidation and decreased biomass relative to conventional Earth soil cultivation. Moreover, telomerase activity substantially declines and telomeres shorten in plants grown in lunar regolith simulant, implying that genome integrity may not be sustainable over the long-term. Overcoming these challenges will be an important goal in ensuring success on the lunar frontier.

17.
Eur J Cancer ; 202: 113973, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447379

RESUMO

PURPOSE: The NIPU-trial investigates the effect of adding the telomerase vaccine UV1 to treatment with ipilimumab and nivolumab for patients with pleural mesothelioma (PM). METHODS: In this phase 2 open-label trial, patients with PM progressing after first-line chemotherapy were randomised to receive ipilimumab and nivolumab alone (arm B) or combined with UV1 (arm A). The primary endpoint was progression-free survival (PFS) as determined by BICR. It was estimated that 69 PFS events were needed to detect a hazard ratio (HR) of 0.60 with 80% power and a one-sided alpha level of 0.10. RESULTS: 118 patients were randomised. The median PFS determined by blinded independent central review (BICR) was 4.2 months (95%CI 2.9-9.8) in arm A and 4.7 months (95%CI 3.9-7.0) in arm B (HR 1.01, 80%CI 0.75-1.36 P = 0.979), after a median follow-up of 12.5 months (95%CI 9.7-15.6). The investigator-determined median PFS was 4.3 months (95%CI 3.0-6.8) in arm A and 2.9 months (95%CI 2.4-5.5) in arm B (HR 0.60, 80%CI 0.45-0.81 P = 0.025). Confirmed objective response rate (ORR) by BICR was 31% in arm A and 16% in arm B (odds ratio 2.44 80%CI 1.35-4.49 P = 0.056). After a median follow-up time of 17.3 months (95%CI 15.8-22.9), the OS was 15.4 months (95%CI 11.1-22.6) in arm A and 11.1 months (95%CI 8.8-18.1) in arm B, (HR 0.73, 80%CI 0.53-1.0, P = 0.197). CONCLUSION: The primary endpoint was not met. Predefined analyses of response rates are in favour of adding the vaccine.


Assuntos
Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Telomerase , Humanos , Nivolumabe/efeitos adversos , Ipilimumab/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Mesotelioma Maligno/tratamento farmacológico , Mesotelioma/tratamento farmacológico , Neoplasias Pleurais/tratamento farmacológico , Neoplasias Pleurais/etiologia
18.
Tissue Cell ; 88: 102344, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38513553

RESUMO

Telomerase is present in cells with numerous or even un-limited replicative cycles, and some studies suggest it is a stemness marker. In order to determine whether this is the case for the human hair bulbs, an immunohistochemical and ultrastructural study has been carried out using antibodies against telomerase and PCNA (a cell proliferation marker). The observed labeling is similar for the two antibodies here utilized and is mainly nuclear. More frequent telomerase-positive cells are seen in the matrix epithelium of anagen hair bulbs but sparse labeled cells are also seen in the outer root sheath. In late catagen and also in telogen hair follicles only sparse labeled cells are present in the outer root sheath and few cells also in the secondary germinal epithelium formed at the base of the hair bulb in telogen. Electron microscopic immunogold shows a prevalent nuclear distribution and a lower cytoplasmic distribution in sparse cells of anagen bulb matrix that contain few keratin bundles. The nuclear localization is generally seen over the euchromatin or in areas occupied by more compact chromatin that may indicate an activity of telomerase in chromatin assemblage or dis-assemblage. The study concludes that the localization of telomerase is present in cells undergoing proliferation, namely transit amplifying cells of the outer root sheath that are sparsely detected in the lowermost secondary germinal hair bulb also in telogen.

19.
Aging Cell ; : e14138, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475941

RESUMO

It has remained unclear how aging of endothelial cells (EC) contributes to pathophysiology of individual organs. Cell senescence results in part from inactivation of telomerase (TERT). Here, we analyzed mice with Tert knockout specifically in EC. Tert loss in EC induced transcriptional changes indicative of senescence and tissue hypoxia in EC and in other cells. We demonstrate that EC-Tert-KO mice have leaky blood vessels. The blood-brain barrier of EC-Tert-KO mice is compromised, and their cognitive function is impaired. EC-Tert-KO mice display reduced muscle endurance and decreased expression of enzymes responsible for oxidative metabolism. Our data indicate that Tert-KO EC have reduced mitochondrial content and function, which results in increased dependence on glycolysis. Consistent with this, EC-Tert-KO mice have metabolism changes indicative of increased glucose utilization. In EC-Tert-KO mice, expedited telomere attrition is observed for EC of adipose tissue (AT), while brain and skeletal muscle EC have normal telomere length but still display features of senescence. Our data indicate that the loss of Tert causes EC senescence in part through a telomere length-independent mechanism undermining mitochondrial function. We conclude that EC-Tert-KO mice is a model of expedited vascular senescence recapitulating the hallmarks aging, which can be useful for developing revitalization therapies.

20.
Reprod Biol Endocrinol ; 22(1): 20, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308254

RESUMO

BACKGROUND: Decidualization of endometrial cells is the prerequisite for embryo implantation and subsequent placenta formation and is induced by rising progesterone levels following ovulation. One of the hormone receptors contributing to endometrial homeostasis is Progesterone Receptor Membrane Component 1 (PGRMC1), a non-classical membrane-bound progesterone receptor with yet unclear function. In this study, we aimed to investigate how PGRMC1 contributes to human decidualization. METHODS: We first analyzed PGRMC1 expression profile during a regular menstrual cycle in RNA-sequencing datasets. To further explore the function of PGRMC1 in human decidualization, we implemented an inducible decidualization system, which is achieved by culturing two human endometrial stromal cell lines in decidualization-inducing medium containing medroxyprogesterone acetate and 8-Br-cAMP. In our system, we measured PGRMC1 expression during hormone induction as well as decidualization status upon PGRMC1 knockdown at different time points. We further conferred proximity ligation assay to identify PGRMC1 interaction partners. RESULTS: In a regular menstrual cycle, PGRMC1 mRNA expression is gradually decreased from the proliferative phase to the secretory phase. In in vitro experiments, we observed that PGRMC1 expression follows a rise-to-decline pattern, in which its expression level initially increased during the first 6 days after induction (PGRMC1 increasing phase) and decreased in the following days (PGRMC1 decreasing phase). Knockdown of PGRMC1 expression before the induction led to a failed decidualization, while its knockdown after induction did not inhibit decidualization, suggesting that the progestin-induced 'PGRMC1 increasing phase' is essential for normal decidualization. Furthermore, we found that the interactions of prohibitin 1 and prohibitin 2 with PGRMC1 were induced upon progestin treatment. Knocking down each of the prohibitins slowed down the decidualization process compared to the control, suggesting that PGRMC1 cooperates with prohibitins to regulate decidualization. CONCLUSIONS: According to our findings, PGRMC1 expression followed a progestin-induced rise-to-decline expression pattern during human endometrial decidualization process; and the correct execution of this expression program was crucial for successful decidualization. Thereby, the results of our in vitro model explained how PGRMC1 dysregulation during decidualization may present a new perspective on infertility-related diseases.


Assuntos
Progesterona , Proibitinas , Gravidez , Feminino , Humanos , Progesterona/farmacologia , Progesterona/metabolismo , Decídua/metabolismo , Receptores de Progesterona/genética , Progestinas/metabolismo , Endométrio/metabolismo , Células Estromais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...